Los alimentos como fuente de energía, nutrientes y otros bioactivos

Master en dietetica y nutricion

Los alimentos como fuente de energía, nutrientes y otros bioactivos

 

 

 

Los alimentos como fuente de energía y nutrientes

El conocimiento de la composición nutricional de los alimentos y los diferentes grupos en que estos se clasifican es fundamental para la preparación de dietas, pues simplifica y ayuda extraordinariamente en la elección de los alimentos y menús que formarán parte de la dieta.

Según el Código Alimentario Español, los alimentos son aquellas sustancias o productos de cualquier naturaleza que, por sus componentes, características, preparación y estado de conservación, son susceptibles de ser habitual e idóneamente utilizados para la normal nutrición humana, como fruitivos o como productos dietéticos en casos especiales de nutrición humana.

¿Qué aportan los alimentos?

Los alimentos son almacenes dinámicos de nutrientes de origen animal o vegetal, sólidos o líquidos, naturales o transformados que una vez ingeridos aportan:

• Materiales a partir de los cuales el organismo puede producir movimiento, calor o cualquier otra forma de energía, pues el hombre necesita un aporte continuo de energía.
• Materiales para el crecimiento, la reparación de los tejidos y la reproducción.
• Sustancias necesarias para la regulación de los procesos de producción de energía, crecimiento y reparación de tejidos.
• Además, los alimentos tienen también un importante papel proporcionando placer y palatabilidad a la dieta.

Los componentes de los alimentos que desempeñan estas funciones son los nutrientes: sustancias necesarias para la salud que no pueden ser sintetizadas por el organismo y que por tanto deben ser ingeridas a través de los alimentos y la dieta y cuya carencia va a producir una patología determinada que sólo curará con la administración del nutriente en cuestión.

 

No olvidemos en este breve recuerdo a otros constituyentes importantes de los alimentos:

• El agua, un componente común en prácticamente todos los alimentos, cuyo contenido es extraordinariamente variable y del que depende la concentración del resto de los nutrientes y, por tanto, el valor nutritivo del alimento (0% en aceites, azúcar o galletas y 96% en melón y sandía).
Fibra dietética o alimentaria, con un papel destacado en la mecánica digestiva y en la prevención de algunas enfermedades crónico‐ degenerativas.

 

 

Vea nuestro máster en Dietética y Nutrición.

 

Digestión y Absorción de Nutrientes

Master en dietetica y nutricion

Digestión y Absorción de Nutrientes

 

 

 

Proceso de absorción de nutrientes

Un alimento es realmente incorporado al organismo después de ser digerido, es decir, degradado física y químicamente para que sus componentes puedan ser absorbidos, es decir, puedan atravesar la pared del aparato digestivo y pasar a la sangre (o a la linfa).

Proceso de digestión

Antes de que todos estos componentes puedan ser utilizados o metabolizados, los alimentos deben sufrir en el cuerpo diversos cambios físicos y químicos que reciben el nombre de digestión y que los hacen «absorbibles», aunque no siempre es necesario que se produzca algún cambio para que el componente se absorba. Por ejemplo, el agua, los minerales y ciertos hidratos de carbono se absorben sin modificación previa.

La digestión consiste en dos procesos, uno mecánico y otro químico. La parte mecánica de la digestión incluye la masticación, deglución, la peristalsis y la defecación o eliminación de los alimentos.

En la boca se produce la mezcla y humectación del alimento con la saliva, mientras éste es triturado mecánicamente por masticación, facilitando la deglución. La saliva contiene ptialina, una enzima que hidroliza una pequeña parte del almidón a maltosa.

En el intestino delgado tiene lugar la mayor parte de los procesos de digestión y absorción. El alimento se mezcla con la bilis, el jugo pancreático y los jugos intestinales. Durante la fase química de la digestión diferentes enzimas rompen las moléculas complejas en unidades más sencillas que ya pueden ser absorbidas y utilizadas.

 

Proceso de absorción de nutrientes

 

El proceso de absorción de nutrientes se produce principalmente y con una extraordinaria eficacia a través de las paredes del intestino delgado, donde se absorbe la mayor parte del agua, alcohol, azúcares, minerales y vitaminas hidrosolubles, así como los productos de digestión de proteínas, grasas e hidratos de carbono. Las vitaminas liposolubles se absorben junto con los ácidos grasos.

La absorción puede disminuir notablemente si se ingieren sustancias que aceleran la velocidad de tránsito intestinal, como la fibra dietética ingerida en grandes cantidades y los laxantes. Igualmente, la fibra y el ácido fítico pueden reducir la absorción de algunos minerales, como el hierro o el zinc, por ejemplo. En la enfermedad celíaca (o intolerancia al gluten), la destrucción de las vellosidades intestinales puede reducir significativamente la superficie de absorción.

Los ácidos grasos que pasan a la pared intestinal son transformados inmediatamente en triglicéridos que serán transportados hasta la sangre por la linfa. La grasa puede ser transformada posteriormente en el hígado y finalmente se deposita en el tejido adiposo, una importante reserva de grasa y de energía.

Los hidratos de carbono en forma de monosacáridos pasan a la sangre y posteriormente al hígado desde donde pueden ser transportados como glucosa a todas las células del organismo para ser metabolizada y producir energía. La insulina es necesaria para la incorporación de la glucosa a las células. Los monosacáridos también pueden ser transformados en glucógeno, una fuente de energía fácilmente utilizable que se almacena en el hígado y en los músculos esqueléticos.

Los aminoácidos de las proteínas pasan igualmente a la sangre y de ésta al hígado. Posteriormente pueden pasar a la circulación general para formar parte del pool de aminoácidos, un importante reservorio que será utilizado para la síntesis de proteínas estructurales y enzimas. Los aminoácidos en exceso también pueden ser oxidados para producir energía.

 

Vea nuestro máster en Dietética y Nutrición.

Otros Componentes Bioactivos

Master en dietetica y nutricion

Otros Componentes Bioactivos

 

 

Además de la fracción nutritiva formada por macronutrientes, minerales y vitaminas, los alimentos contienen una fracción no nutritiva, mucho más numerosa y que a su vez está constituida por dos partes:

Componentes no naturales: aditivos y contaminantes.
Componentes naturales de los alimentos de origen animal y vegetal: Los alimentos de origen animal, además de los nutrientes conocidos, también aportan sustancias bioactivas.

 

 

Se estima que una dieta mixta puede contener entre 60.000 y 100.000 componentes bioactivos distintos, potencialmente efectivos para reducir el riesgo de enfermedades crónicas.

Además de su importante acción antioxidante (a través de mecanismos como secuestro de radicales libres, inhibición de la producción de peróxido de hidrógeno, activación de mecanismos de defensa endógenos (catalasa, superóxido dismutasa,. .), quelación de metales, etc.), otros muchos mecanismos biológicamente plausibles pueden ser responsables de su efecto protector:

– Modulación de la expresión genética (y su repercusión en el metabolismo) – Destoxificación de cancerígenos (activación de sistemas enzimáticos de Fase I y II).

– Inducción de muerte celular (apoptosis/supresión de mitosis)

– Protección del ADN

– Modificación de la comunicación celular

– Modificación del perfil hormonal (p.e. niveles de hormonas esteroideas)

– Modulación del perfil lipídico

– Estimulación del sistema inmunitario

– Efecto antiinflamatorio

– Efectos sobre la hemostasia

– Efecto hipocolesterolémico

 

– Efecto hipotensor

– Actividad antimicrobiana, Etc.

 

Vea nuestro máster en Dietética y Nutrición.

 

Vitaminas

Master en dietetica y nutricion

Vitaminas

 

 

Las vitaminas son micronutrientes orgánicos, sin valor energético, necesarias para el hombre en muy pequeñas cantidades y que deben ser aportadas por la dieta, por la alimentación, para mantener la salud.

Vitamina A, retinol, carotenos (provitamina A)

Vitamina liposoluble esencial para prevenir la ceguera nocturna, para la visión, para un adecuado crecimiento y funcionamiento del sistema inmunitario y para mantener la piel y las mucosas sanas, pues participa en la síntesis proteica y en la diferenciación celular. Su falta en la dieta provoca una enfermedad denominada xeroftalmia, principal causa de ceguera en los niños y todavía frecuente en muchas partes del mundo, en la que los ojos desarrollan úlceras y la córnea se vuelve opaca, produciendo ceguera.

Vitamina D

La vitamina D, colecalciferol (D3), ergocalciferol (D2) tiene un papel destacado en la mineralización de los huesos, pues favorece la absorción intestinal de calcio y fósforo y aumenta su reabsorción renal.

Vitamina E

La vitamina E (tocoferoles) es un potente antioxidante que protege a los lípidos y otros componentes de las células del daño oxidativo, de esta manera interviene en el mantenimiento de la estructura de las membranas celulares. Es especialmente útil evitando la oxidación de los ácidos grasos poliinsaturados (AGP); por ello, se recomienda que exista una adecuada relación entre la ingesta de esta vitamina y la de AGP.

Vitamina K

La vitamina K, filoquinona (K1), menaquinona (K2), es necesaria para la síntesis de los numerosos e importantes factores de la coagulación, por lo que su falta puede prolongar peligrosamente el tiempo de hemorragia. Su presencia en cantidades adecuadas puede marcar la diferencia entre la vida y la muerte.

Vitamina B1 o tiamina

Forma parte de una coenzima que interviene en el metabolismo energético, en la liberación de la energía de los hidratos de carbono. Por ello, las ingestas recomendadas de tiamina se estiman en función de la ingesta energética (0.4 mg por 1000 kcal). Juega también un importante papel en la transmisión nerviosa.

Vitamina B2 o riboflavina

Como la tiamina, la riboflavina también está implicada en la liberación de energía de hidratos de carbono, grasas y proteínas. Por ello, sus necesidades dependen también del contenido calórico de la dieta (0.6 mg/1000 kcal). Otras funciones están relacionadas con el mantenimiento de una adecuada salud ocular y de la piel.

Vitamina B3, niacina o vitamina PP

El nombre de niacina incluye dos formas químicas: ácido nicotínico y nicotinamida. Las dos coenzimas en los que participa la niacina son fundamentales en el metabolismo energético, especialmente en el metabolismo de la glucosa, de la grasa y del alcohol.

Vitamina B5 o ácido pantoténico

Interviene en numerosas etapas de la síntesis de lípidos, neurotransmisores, hormonas esteroideas y hemoglobina y participa también en el metabolismo energético. La ingesta adecuada para un adulto es de 5 mg/día.

Vitamina B6 o piridoxina

También denominada piridoxal o piridoxamina, la vitamina B6 interviene en el metabolismo de las proteínas y de los ácidos grasos, en la formación de hemoglobina, de ácidos nucleicos (ADN o ARN) y de la lecitina.

Vitamina B8 o biotina

Interviene en el metabolismo de hidratos de carbono, ácidos grasos y algunos aminoácidos. La deficiencia es muy rara en el hombre, pero puede producirse experimentalmente tras el consumo diario de grandes cantidades de clara de huevo cruda que contiene una proteína, la avidina, que al unirse a la biotina impide su absorción.

Ácido fólico o vitamina B9

El ácido fólico (folatos o folacina) tiene diversas funciones, pero es especialmente importante en la formación de las células sanguíneas y del ADN en las células en fase de división rápida, por lo que sus necesidades se incrementan durante las primeras semanas de la gestación.

Vitamina B12 o cianocobalamina

Es necesaria, junto con el ácido fólico, para las células en fase de división activa como las hematopoyéticas de la médula ósea. Su deficiencia da lugar a una forma característica de anemia la anemia perniciosa y a la degeneración de las neuronas, generalmente consecuencia de una deficiencia hereditaria de la proteína necesaria para que se absorba la vitamina B12. Se encuentra exclusivamente en los alimentos de origen animal (hígado, carnes, pescados, huevos y leche), por lo que puede existir riesgo a largo plazo de deficiencia en los vegetarianos estrictos o veganos.

Vitamina C o ácido ascórbico

Es necesaria para la síntesis de colágeno, para la correcta cicatrización, el normal funcionamiento de las glándulas adrenales y para facilitar la absorción del hierro de los alimentos de origen vegetal.

Antioxidantes

En el cuerpo, a lo largo de toda la vida, se producen una serie de procesos oxidativos que dan lugar a un gran número de los llamados radicales libres, moléculas que pueden lesionar las células y que, en parte, son también responsables del envejecimiento.

 

 

Vea nuestro máster en Dietética y Nutrición.

 

Minerales

Master en dietetica y nutricion

Minerales

 

 

Se han descrito aproximadamente 20 minerales esenciales para el hombre.

Según las cantidades en que sean necesarios y se encuentren en los tejidos corporales se distinguen tres grandes grupos:

• Macrominerales: calcio, fósforo, magnesio, sodio o potasio, cloro, azufre.

• Microminerales o elementos traza que se encuentran en muy pequeñas cantidades: hierro, cinc, yodo, selenio, flúor, manganeso, selenio, cromo, cobre o molibdeno.

• Minerales ultratraza.

La distinción entre estos grupos no implica una mayor o menor importancia nutricional de unos o de otros, todos son igualmente necesarios para la vida. A diferencia de las vitaminas que pueden ser fácilmente destruidas, los minerales son elementos inorgánicos que siempre mantienen su estructura química.

El hierro, por ejemplo, puede combinarse temporalmente con otros elementos formando sales, pero sigue siendo hierro. Los minerales no son destruidos o alterados por el calor, el oxígeno o los ácidos, únicamente pueden perderse por lixiviación (en el agua de lavado y cocción de los alimentos, cuando ésta no se consume). Por ello, a diferencia de las vitaminas, no requieren un cuidado especial cuando los alimentos que los contienen se someten a procesos culinarios.

Calcio (Ca)

Es el mineral más abundante en el organismo, formando parte de huesos y dientes principalmente, que contienen el 99.9% de todo el calcio del cuerpo. En los huesos tiene dos funciones: forma parte de su estructura y es una reserva de calcio para mantener una adecuada concentración en sangre (incluso cuando hay una deficiencia en la ingesta de calcio, la cantidad en sangre es constante, pero a expensas del hueso).

Fósforo (P)

Es el segundo mineral más abundante en el organismo. Aproximadamente un 85% se encuentra combinado con el calcio en huesos y dientes, interviniendo, por tanto, en su adecuada mineralización. El fósforo forma parte de todas las células y es constituyente del material genético (ADN y ARN), de algunos hidratos de carbono, lípidos (fosfolípidos que ayudan a transportar otros lípidos en la sangre) y proteínas (fosfoproteínas, como la caseína de la leche). Es necesario para la activación de muchos enzimas y de las vitaminas del grupo B y participa en el metabolismo energético.

Se encuentra ampliamente distribuido en los alimentos, especialmente en los que son fuente de proteínas de origen animal (carnes, pescados, huevos, lácteos), en legumbres y frutos secos. Por ello, su deficiencia dietética prácticamente es desconocida. Además, se añaden fosfatos a muchos alimentos procesados.

Magnesio (Mg)

Aproximadamente la mitad de todo el magnesio que hay en el cuerpo se encuentra en el hueso, como reservorio y participando también en su adecuada mineralización. El resto se encuentra en músculos y en tejidos blandos, donde actúa como cofactor de cientos de enzimas intracelulares. Participa, junto con el calcio, en la contracción muscular y en la coagulación de la sangre (el calcio promueve estos procesos y el magnesio los inhibe). Interviene en el metabolismo de los hidratos de carbono, en la transmisión del impulso nervioso y en el adecuado funcionamiento del sistema inmunitario y ayuda a prevenir la caries dental.

El magnesio está ampliamente distribuido en los alimentos, especialmente en los de origen vegetal: leguminosas, frutos secos, patatas y otras verduras y hortalizas. Se encuentra también en algunos moluscos y crustáceos. El consumo de aguas «duras» con un alto contenido en magnesio puede contribuir también a la ingesta.
En España, la dieta aporta 309 mg/día (103% de las ingestas recomendadas), la mayor parte procedente de cereales (26%), verduras (18%), lácteos (16%), frutas y frutos secos (9.8%), carnes (9.2%) y leguminosas (8.7%).

Hierro (Fe)

La mayor parte del hierro del organismo se encuentra formando parte de dos proteínas: la hemoglobina o pigmento rojo de la sangre y la mioglobina o proteína de las células musculares; en ambas, el hierro ayuda a transportar el oxígeno necesario para el metabolismo celular. El hierro puede existir en dos estados iónicos diferentes (oxidado o hierro férrico: Fe+++, y ferroso o reducido: Fe++), por lo que puede actuar como cofactor de numerosas enzimas que intervienen en las reacciones de óxido‐ reducción del organismo.
El hierro es almacenado en cierta cantidad en órganos como el hígado.

En los alimentos, el hierro se encuentra en dos formas:

Hierro hemo en los de origen animal, formando parte de las proteínas hemoglobina y mioglobina. El hierro hemo se absorbe mucho mejor que el que se encuentra en los alimentos de origen vegetal.

Hierro no hemo en los alimentos de origen vegetal, principalmente en leguminosas, frutos secos y algunas verduras. El hierro vegetal se absorbe en muy pequeñas cantidades.

Yodo (I)

La mayor parte del yodo se encuentra en la glándula tiroidea, siendo un constituyente esencial de las hormonas sintetizadas en la misma, hormonas que regulan la temperatura corporal, la tasa metabólica, la reproducción, el crecimiento, la producción de células rojas o la función muscular y nerviosa. Su deficiencia, todavía frecuente en algunos grupos de población, determina la hipertrofia de la glándula tiroides conocida con el nombre de bocio y puede alterar el desarrollo fetal.
Las fuentes dietéticas más importantes son los pescados y mariscos.

Cinc (Zn)

El cinc es un mineral extraordinariamente versátil que forma parte de más 100 enzimas, relacionadas con el crecimiento, la actividad de la vitamina A o la síntesis de enzimas pancreáticos. Virtualmente, todas las células contienen cinc, pero las mayores concentraciones están en el hueso, en la glándula prostática y en los ojos.

Es fundamental para el sistema inmune, para el crecimiento y desarrollo. Es esencial para mantener el sentido del gusto y, por tanto, el apetito, para facilitar la cicatrización de las heridas y para el normal desarrollo del feto, entre otras importantes funciones.

Selenio (Se)

Es uno de los antioxidantes del organismo trabajando junto con la vitamina E y el enzima glutation peroxidasa, que previene la formación de radicales libres. Algunos estudios sugieren que su deficiencia puede aumentar el riesgo de padecer enfermedad coronaria y algunos tipos de cáncer.

Sodio (Na)

Todos los líquidos del cuerpo contienen sodio, incluso la sangre, y su papel es crítico para regular el balance hídrico. El sodio es el principal catión de los líquidos extracelulares del organismo. Es necesario para la transmisión nerviosa y para la contracción muscular.

Potasio (K)

El potasio ejerce una acción complementaria a la del sodio en el funcionamiento de las células, pero a diferencia de éste, el potasio es el principal catión intracelular.

 

 

 

 

Vea nuestro máster en Dietética y Nutrición.

El Agua

Master en dietetica y nutricion

El Agua

 

 

Aunque el agua se excluye a menudo de las listas de nutrientes, es un componente esencial para el mantenimiento de la vida que debe ser aportado por la dieta en cantidades muy superiores a las que se producen en el metabolismo. El agua debe pues considerarse como un verdadero nutriente que debe formar parte de la alimentación.

De hecho, en la actualidad, muchos países incluyen entre sus recomendaciones dietéticas la de ingerir una determinada cantidad de líquidos, principalmente agua de bebida (1,5 a 2,5 litros/día = al menos 8 vasos al día, en climas moderados), recomendación que ya aparece en las pirámides nutricionales de algunos grupos de población. Además, puesto que el cuerpo tiene una capacidad muy limitada para almacenar agua, debe ser ingerida diariamente en cantidad aproximadamente igual a la que se pierde.

Normalmente la sensación de sed, invitándonos a beber, permite satisfacer nuestras necesidades de agua, pero no siempre ocurre así. Puesto que el mecanismo de la sed aparece cuando el proceso de deshidratación ya se ha iniciado, es aconsejable beber incluso aunque no se tenga sed.

Agua Corporal

 

En el caso del hombre el agua constituye cerca de las dos terceras partes de su peso siendo, por tanto, el componente cuantitativamente más importante y su contenido se mantiene prácticamente constante gracias a que nuestro organismo está dotado de diversos mecanismos que regulan muy bien los ingresos y las pérdidas de dicho líquido, algo que es extraordinariamente vital.

Como porcentaje de la masa corporal, el contenido de agua es mayor en los hombres que en las mujeres y tiende a disminuir con la edad en ambos sexos como consecuencia de los cambios que se producen en la composición corporal (pérdida de masa magra e incremento de grasa corporal), siendo en algunas personas mayores una causa importante de reducción de peso en esta etapa de la vida.

Un hombre adulto tiene aproximadamente un 60% y una mujer una cantidad próxima al 50%. algunos nutrientes y mejorando también el valor gastronómico de las recetas culinarias.

Balance Hídrico

El balance entre la ingesta de líquidos y las pérdidas tiene gran importancia y cualquier alteración de este puede poner en peligro la vida del individuo. Por ejemplo, un adulto sano y bien nutrido puede vivir incluso 60 o 70 días sin consumir alimento, dependiendo evidentemente de las reservas de grasa que tenga, pero sin agua la muerte se produce en pocos días.

El aporte de agua procede de tres fuentes principales:

• Del consumo de líquidos: agua y otras bebidas.

• Del agua de los alimentos sólidos, pues casi todos contienen algo de agua y muchos (frutas, verduras, hortalizas, leche,) una cantidad considerable.

• De las pequeñas cantidades de agua que se producen en los procesos metabólicos de proteínas, grasas e hidratos de carbono.

Las pérdidas de agua incluyen la eliminada por orina, heces, por evaporación a través de la piel y a través de la respiración. Estas pérdidas aumentan considerablemente cuando se produce una mayor sudoración como consecuencia del calor ambiental o de la realización de ejercicio físico intenso y en situaciones de diarrea, infección, fiebre o alteraciones renales.

Necesidades y requerimientos de agua

Los requerimientos de agua del hombre están estrechamente relacionados con numerosos factores endógenos y exógenos: edad (que incide especialmente en niños y ancianos), tamaño corporal (de él depende la superficie de evaporación), dieta (condiciona la carga osmótica a eliminar), temperatura y humedad exteriores (factores físicos exógenos que afectan a la velocidad de evaporación de cualquier líquido) o la actividad física (pérdidas por sudor) y situaciones fisiológicas especiales como embarazo o lactancia materna. Por ello es difícil llegar a establecer recomendaciones generales.

Importancia del agua en las personas de edad

Para muchas personas, especialmente las personas ancianas, este objetivo es a veces difícil de conseguir por su incapacidad física que dificulta el acceso al agua, por enfermedades crónicas, demencia, por la menor sensación de sed.

Otros evitan consumir líquidos por miedo a la incontinencia o para evitar las urgencias de tener que ir al baño cuando están fuera de casa. Hay que avisar a la gente mayor de la necesidad de ingerir bebidas a intervalos regulares de tiempo, incluso aunque no tengan sed y así lo indican las recomendaciones actuales. La ingesta extra de líquidos puede realizarse por la mañana temprano, evitando, las personas que padecen incontinencia, el consumo de bebidas por la noche.

 

Vea nuestro máster en Dietética y Nutrición.

Fibra Dietetica

Master en dietetica y nutricion

Fibra Dietética

 

 

La fibra dietética o alimentaria es un componente importante de la dieta y debe consumirse en cantidades adecuadas.

Bajo la denominación de fibra dietética se incluyen un amplio grupo de sustancias que forman parte de la estructura de las paredes celulares de los vegetales. Los principales componentes son polisacáridos no amiláceos (celulosa, hemicelulosas, pectinas, gomas y mucílagos) y algunos componentes no polisacáridos, entre los que destaca la lignina.

Estas sustancias no pueden ser digeridas por los enzimas digestivos, pero son parcialmente fermentadas por las bacterias intestinales dando ácidos grasos volátiles que pueden ser utilizados como fuente de energía.

La mayoría de los alimentos tienen una mezcla de ambos tipos de fibra. El contenido medio de fibra soluble en algunos alimentos, expresado como porcentaje del contenido total de fibra, es el siguiente: 32% en cereales, verduras y hortalizas, 25% en leguminosas y 38% en frutas.

Funciones

 

 

Tienen importantes funciones regulando la mecánica digestiva (evitando el estreñimiento) y actuando como factor de protección en algunas de las llamadas enfermedades crónicas (cardiovasculares, diabetes y, especialmente, en las neoplasias de colon).

Por ejemplo, las pectinas, solubles en agua, ayudan a reducir los niveles sanguíneos de colesterol y de glucosa; la celulosa, aunque insoluble, es capaz de absorber agua, aumentando el volumen de las heces y actuando como un laxante. Sin embargo, un excesivo consumo de fibra puede resultar nutricionalmente inadecuado pues, por su acción laxante, hace que los nutrientes pasen más deprisa por el tubo digestivo y se reduzca su absorción.

También puede producir la retención de algunos minerales como calcio, hierro, cinc o magnesio, eliminándolos por las heces y pudiendo dar lugar, en casos extremos, a deficiencias de estos. En esta acción juegan un papel importante los fitatos y el ácido fítico.

Vea nuestro máster en Dietética y Nutrición.

Hidratos de Carbono

Master en dietetica y nutricion

Hidratos de Carbono

 

 

Los hidratos de carbono, carbohidratos (CHO), glúcidos (Glícidos: anglicismo) o azúcares tienen también como función primordial aportar energía, aunque con un rendimiento 2.5 veces menor que el de la grasa.

Nutricionalmente hay que distinguir dos grandes grupos:

Almidón, polímero de glucosa formando cadenas lineales o ramificadas. Es la forma de almacenamiento de glucosa (de energía) de las plantas. Cuando comemos alimentos de origen vegetal, el almidón es hidrolizado liberando las moléculas de glucosa que nuestro cuerpo utiliza para obtener energía.

Diversos polisacáridos que reciben el nombre de polisacáridos no amiláceos (no glucémicos) que no son digeridos por los enzimas digestivos del hombre y que constituyen la fibra dietética.

La glucosa tiene una gran importancia nutricional. Es uno de los dos azúcares de los disacáridos y es la unidad básica de los polisacáridos. Uno de éstos, el almidón, es la principal fuente de energía en la dieta; otro, el glucógeno, es una importante forma de almacenamiento de energía en el organismo.

La sacarosa, presente en algunas verduras y frutas, se obtiene de la caña de azúcar y de la remolacha azucarera. El azúcar (blanco y moreno) es esencialmente sacarosa, constituida por la unión de una molécula de glucosa y una de fructosa.

La fructosa es el principal azúcar de las frutas, pero también se encuentra en verduras y hortalizas y, especialmente, en la miel. Es el azúcar más dulce.

Recomendaciones dietéticas

Uno de los aspectos menos satisfactorios de las dietas de las sociedades desarrolladas es la importante disminución producida en la ingesta de hidratos de carbono, consecuencia del menor consumo de algunos alimentos de origen vegetal (pan, patatas y leguminosas, principalmente).

Se recomienda que la dieta equilibrada y prudente incluya más de un 55% de la energía total consumida en forma de hidratos de carbono, principalmente complejos, pues está claro su papel en el control del peso corporal y, junto con otros componentes de los alimentos de origen vegetal, en la prevención de la enfermedad cardiovascular, de la diabetes, de algunos tipos de cáncer y de algunos trastornos gastrointestinales.

Sustancias edulcorantes

Los edulcorantes son todas aquellas sustancias capaces de proporcionar sabor dulce a un alimento o preparación culinaria. Además de las comentadas en el apartado de hidratos de carbono, hay otras muchas sustancias que también tienen sabor dulce. Pueden clasificarse de la siguiente manera:

Edulcorantes naturales (glucosa, fructosa, galactosa, sacarosa, lactosa, maltosa, miel).

Edulcorantes nutritivos, obtenidos a partir de sustancias naturales: derivados del almidón (glucosa o jarabe de glucosa), derivados de la sacarosa (azúcar invertido), azúcares‐ alcoholes o polioles (sorbitol, manitol, xilitol, .), neoazúcares (fructo‐ oligosacáridos). Todos suministran Calorías.

Edulcorantes intensos: (1) químicos o edulcorantes artificiales (sacarina, aspartamo, acesulfamo, ciclamato, alitamo) y (2) edulcorantes intensos de origen vegetal (glicirriza).

 

Vea nuestro máster en Dietética y Nutrición.

 

Grasas y Lipidos

Master en dietetica y nutricion

Grasas y Lípidos

 

Los lípidos son un grupo de sustancias insolubles en agua, pero solubles en solventes orgánicos, que incluyen los triglicéridos (comúnmente llamados grasas), fosfolípidos y esteroles.

1. Triglicéridos (grasas y aceites):

• Glicerol
• Ácidos grasos:
O Saturados (AGS) O Monoinsaturados (AGM) O Poliinsaturados (AGP):
AGP omega‐3 (n‐3)
AGP omega‐6 (n‐6)

2. Fosfolípidos (ej. Lecitina)

3. Esteroles (ej. Colesterol)

Las grasas incluyen no sólo las grasas visibles, como la mantequilla, el aceite de oliva o la grasa visible de la carne, sino también las grasas invisibles que contienen la leche, los frutos secos o los pescados. Las grasas son mezclas de triglicéridos, formados por 3 moléculas de ácidos grasos y una de glicerol y las diferencias entre ellas dependen fundamentalmente de su diferente composición en ácidos grasos que, a su vez, se diferencian por el número de átomos de carbono y de dobles enlaces.

Ácidos grasos

 

 

Hay tres tipos principales de ácidos grasos:

1. Ácidos grasos saturados (AGS). Sólo tienen enlaces sencillos entre átomos de carbono adyacentes; no contienen dobles enlaces, lo que les confiere una gran estabilidad y la característica de ser sólidos a temperatura ambiente. Los AGS predominan en los alimentos de origen animal, aunque también se encuentran en grandes cantidades en algunos alimentos de origen vegetal como los aceites de coco, palma y palmiste, también llamados aceites tropicales. El ácido esteárico (C18:0) es un ejemplo de AGS.

2. Ácidos grasos poliinsaturados (AGP) con dos o más dobles enlaces que pueden reaccionar con el oxígeno del aire aumentando la posibilidad de enranciamiento de la grasa. Los pescados y algunos alimentos de origen vegetal, como los aceites vegetales, líquidos a temperatura ambiente, son especialmente ricos en AGP.

3. Ácidos grasos monoinsaturados (AGM) con un doble enlace en la molécula. Por ejemplo, el ácido oleico (C18:1) principal componente del aceite de oliva. Aunque en todos los alimentos hay mezclas de las tres familias, en los de origen vegetal predominan las grasas insaturadas y en los de origen animal las saturadas y unas y otras, según su grado de saturación, se han relacionado positiva y negativamente con las enfermedades cardiovasculares, algunos tipos de cáncer y otras enfermedades crónicas.

Funciones de la grasa

La grasa, necesaria para la salud en pequeñas cantidades, se distingue de los otros dos macronutrientes, hidratos de carbono y proteínas, por su mayor valor calórico: es una fuente concentrada de energía que por término medio suministra, al ser oxidada en el organismo, 9 kcal/g y es esta su característica principal y la que determina su papel en los procesos nutritivos. Los lípidos son elementos de reserva y protección.

Lipoproteínas

Los lípidos, como componentes insolubles en agua, tienen que ser transportados en el organismo unidos a otras moléculas, las lipoproteínas, que solucionan el problema de transportar materiales grasos en un medio acuoso como es la sangre. Hay cuatro tipos de lipoproteínas que se diferencian por su tamaño y densidad:

Quilomicrones: son las de mayor tamaño y menor densidad. Transportan los lípidos de la dieta (principalmente triglicéridos) desde el intestino al resto del organismo.

VLDL: lipoproteínas de muy baja densidad, compuestas en un 50% por triglicéridos. Transportan los lípidos sintetizados en el hígado a otras partes del cuerpo.

LDL: lipoproteínas de baja densidad, cuyo principal componente es el colesterol (50%). Circulan por todo el organismo transportando colesterol, triglicéridos y fosfolípidos y dejándolo disponible para las células.

HDL: lipoproteínas de alta densidad, en cuya composición la parte más importante son las proteínas. Transportan el colesterol desde las células al hígado para ser eliminado.

Grasas hidrogenadas. Ácidos grasos trans

Uno de los procesos industriales a los que se someten los aceites vegetales insaturados y marinos (líquidos) para modificar sus características físicas y sensoriales y así hacerlos más apropiados para usos industriales como sustitutos de AGS, es el denominado proceso de hidrogenación, mediante el cual se incorpora hidrógeno al doble enlace de los ácidos grasos insaturados de los aceites líquidos (se saturan y por tanto se solidifican) para obtener margarinas y grasas emulsionables («shortenings»), grasas sólidas que al estar más saturadas quedan parcialmente protegidas de la oxidación prolongando su vida útil.

Colesterol

 

 

El colesterol es transportado en la sangre en diferentes lipoproteínas. Unas se encargan de sacar el colesterol que sobra de las células y llevarlo al hígado para que sea eliminado a través de la bilis por las heces, estas son las HDL (lipoproteínas de alta densidad, compuestas principalmente por proteínas y una pequeña cantidad de colesterol) que son las que llevan el que coloquialmente llamamos colesterol «bueno» (colesterol‐HDL). En definitiva, lo que hacen es eliminar colesterol y ayudar a reducir los niveles en sangre; tienen, por tanto, un efecto protector.

Por tanto, «tener colesterol» no es malo, al contrario, es imprescindible. Es un compuesto que el cuerpo fabrica y usa. El problema radica en tener niveles muy altos o muy bajos que, en ambos casos, pueden resultar perjudiciales para la salud.

 

Vea nuestro máster en Dietética y Nutrición.

Proteinas

Master en dietetica y nutricion

Proteínas

 

 

 

• Proteínas
• Aminoácidos esenciales y no esenciales
• Calidad de la proteína
• Proteínas

Todos los tejidos vivos contienen proteínas. Se distinguen químicamente de los lípidos y de los hidratos de carbono por contener nitrógeno.

Son polímeros de aminoácidos (hay 20 distintos) unidos por enlaces peptídicos. Una proteína puede contener varios cientos o miles de aminoácidos y la disposición o secuencia de estos aminoácidos determina la estructura y la función de las diferentes proteínas. Algunas son estructurales (como el colágeno del tejido conectivo o la queratina que se encuentra en pelo y uñas), otras son enzimas, hormonas, etc.

De los 20 aminoácidos que se combinan para formar las proteínas, algunos pueden ser sintetizados por el organismo, por lo que se denominan no esenciales (alanina, arginina, ácido aspártico, asparragina, cisteína, ácido glutámico, glutamina, glicina, prolina, serina y tirosina).

Hay otros, los denominados aminoácidos esenciales o indispensables que, sin embargo, no pueden ser sintetizados por el hombre por lo que tienen que ser aportados por los alimentos, por la dieta, condicionando su esencialidad. Estos son: histidina, isoleucina, leucina, lisina, metionina, fenilalanina, treonina, triptófano y valina.

La arginina puede ser esencial para los niños muy pequeños ya que sus requerimientos son mayores que su capacidad para sintetizar este aminoácido. Hay también dos aminoácidos no esenciales que se forman a partir de otros esenciales: cisteína (y cistina) a partir de metionina y tirosina a partir de fenilalanina.

Si la dieta no aporta suficiente cantidad de fenilalanina o si el organismo no puede transformar la fenilalanina en tirosina por algún motivo como sucede en la enfermedad hereditaria denominada fenilcetonuria, entonces la tirosina se convierte en esencial.

Calidad de la Proteína

 

Para juzgar la utilidad de las proteínas de los alimentos para mantener y reparar los tejidos y para llevar a cabo los procesos de crecimiento y formación de estructuras corporales se utiliza el término de «calidad de la proteína», calidad que se estima utilizando diversas medidas experimentales.

Durante la síntesis proteica deben estar presentes en las células todos los aminoácidos necesarios, si falta alguno, la síntesis puede fallar. Por ello, si la proteína ingerida contiene todos los aminoácidos esenciales en las proporciones necesarias para el hombre, se dice que es de alto valor biológico, que es completamente utilizable. Por el contrario, si sólo tiene pequeñas cantidades de uno de ellos (el denominado aminoácido limitante), será de menor calidad.

En general, las proteínas de los alimentos de origen animal tienen mayor valor biológico que las de procedencia vegetal porque su composición en aminoácidos es más parecida a las proteínas corporales. Las proteínas de los huevos y de la leche humana tienen un valor biológico entre 0.9 y 1 (eficacia del 90‐100%, por lo que se usan como proteínas de referencia, un concepto teórico para designar a la «proteína perfecta»); el VB de la proteína de carnes y pescados es de 0.75 y 0.8; en la proteína del trigo de 0.5 y en la de la gelatina de 0.

Las principales fuentes de proteína son: lácteos, carnes, pescados, huevos, cereales, leguminosas y frutos secos. En España, las carnes, los cereales y los lácteos son los alimentos que aportan mayor cantidad.

 

Vea nuestro máster en Dietética y Nutrición,

Hola, en qué podemos ayudarte?
Powered by